NMR Applications for Polymer Characterisation

B. W. K. Diehl, Spectral Service AG, Emil-Hoffmann-Str. 33, 50996 Cologne, Germany, diehl@spectralservice.de

The Principles of NMR in Polymer Characterisation

- > NMR Chemival Shift instead of Retention Time
- > Target molecule must be soluble in deuterated solvent
- Qualitative and quantitative analysis is possible.
- NMR signals show molar response.
- > One characteristic signal without interference is needed
- > Temperature dependent analysis (RT up to 80°C).
- > Drugs and/or formulations can be analysed in complex matrices.

Common chromatographical methods often fail in polymer analytics. Therefore multi-nuclear NMR spectroscopy should be established in phar-macopoeia as an alternative for qualitative and quantitative methods.

Polymers are widely spread in drug design.

Exemplary six different target compound groups are presented.

- Silicone (Polydimethylsiloxane)
- Polysaccharides (Drugs and Galenics)
- Polyether (Galenics)
- Polyester (Galenics)
- > Poly- and Oligopeptides (Drugs)
- Polyvinyl Compounds (Galenics)

Fig. 1 shows the ¹H NMR spectrum of an OH terminated **Polydimethylsiloxane** (**PDMS**). These polymer family can be quantified in drugs using the intensive singlet of the Si(CH₃)₂ groups and an internal standard. The method correlates with FT/IR but has a much lower detection limit (aprox. 1ppm). The

high spectral dispersion allows the analysis of cyclic types (**Fig. 2**), end-groups (OH, TMS or other modified) and the mean chain length. ²⁹Si and ¹³C satellites are useful calibration signals

Fig. 2

H₃C, O-Si-CH₃
H₃C - Si
O Si-CH₃
H₃C - CH₃
CH₃
H₃C - CH₃

Polysaccharides represent the biggest group of polymers used in drugs. Fig. 2 shows the 1H NMR spectrum of Aloverose, an acetylated polymannose from Aloe Vera. The fingerprint signal of the the acetate enables an origin test and a quantification. Fig. 3 shows the comparison of chondroitin sulfates.. These high temperature analysis allows to distinguish between different animal origin (e.g. bovine, porcine, sharc, chicken). The method is useful for other muco-polysacharides like heparines, too.

Polyether, Polyester and Polyvinyl compounds mostly are used as formulation aids.

Fig. 4 shows a comparison of ¹³C NMR spectra of PEG/PPG copolymers with different sequence of the polymer blocks. Fig. 5 shows the ¹H NMR of a drug formulation (top) and for comparison the reference of the corresponding Polymer CoPo Luviscol K 120 (bottom).

Poly- and oligopeptides are the most interesting polymers in drugs. Several types already are characterised in some pharmacopoeia. Fig. 6 shows the 1H NMR spectrum of an oligopeptid. The carbonyl region of goserelin is a characteristic part of the ¹³C NMR spectrum (see Fig 7).

